3. Meirovitch, L., A method for the Liapunov stability analysis of hybrid dynamical systems possessing ignorable coordinates. AIAA Paper No. 70-1045; published as: A method for the Liapunov stability analysis of force-free dynamical systems. AIAA Journal, Vo. 9, No9, 1971.
4. Moiseev, N. N. and Rumiantsev, V.V., Dynamics of a Body with Cavities Containing a Liquid. Moscow, "Nauka", 1965.
5. Lur'e, A. I., Analytical Mechanics . Moscow, Fizmatgiz, 1961.

Translated by N.H.C.

UDC 532. 5. 031

# ON THE STABILITY OF A PLAIN HOLLOW VORTEX 

PMM Vol. 36, N®1, 1972, pp. 60-64
N. S. KOZIN
(Moscow)
(Received July 22, 1971)
Proof is given of the idifferent stability with respect to small perturbations of two flows: a hollow vortex bounded on the outside by a circular wall, and a free hollow vortex.

A method of analyzing the stability of plane potential flows of a perfect incompressible fluid with respect to small perturbations was suggested in [1] by which the difficulties arising in the determination of eigenfunctions of two-dimensional hydrodynamic flows. The method proposed there for the analysis of stability consists of the linearization of equations of hydrodynamics by conformal mapping of the unperturbed flow region onto that of the perturbed flow. It is applicable to fairly simple regions of the unperturbed flow, otherwise the feasability of conformal mapping becomes problematic. This aspect was not touched upon in [1]; some of the flows considered by the Authors cannot be analyzed in this way. since for these conformal mapping is impossible. Neither the question of completeness of the system of eigenfunctions in cases in which mapping is possible was investigated by them. It is, therefore, interesting to examine the equations arising in investigations of small perturbations of stationary flows by the method of conformal mapping, to determine its limits of applicability and, also, to solve Cauchy's problem in terms of perturbation equations.

1. A hollow vortex bounded on the outilde by a circular wall. The potential flow of an incompressible fluid in the form of a plane hollow vortex bounded on the outside by a circular wall is considered. With the notation $z_{0}=x_{0}+i y_{0}$ for the complex variable in the physical plane of flow and $\zeta=u_{0}-i v_{0}$ for the complex velocity, the flow velocity is given by formula

$$
\begin{equation*}
\zeta=-i \zeta^{-1}, \quad 1 \leqslant\left|z_{0}\right| \leqslant r^{-1}, \quad 0<r<1 \tag{1.1}
\end{equation*}
$$

The flow boundary $\left|z_{0}\right|=1$ is free and the pressure at it is constant: $p=$ const. The line $\left|z_{0}\right|=r^{-1}$ is the rigid wall and the flow hodograph is represented by the ring

$$
\begin{equation*}
r \leqslant|\zeta| \leqslant 1 \tag{1.2}
\end{equation*}
$$

The complex flow potential $f_{0}=\varphi_{0}+i \psi_{0}$ is defined by formula

$$
\begin{equation*}
f_{0}=-i \ln z_{0} \tag{1.3}
\end{equation*}
$$

Let at the initial instant of time $t=0$ the flow be acted upon by perturbing forces ( ${ }^{*}$ ) and the perturbed flow potential $f\left(z_{0}, 0\right)$ can be expressed by

$$
\begin{equation*}
f\left(z_{0}, 0\right)=-i \ln z_{0}+\varepsilon f_{1}\left(z_{0}, 0\right)+O\left(\varepsilon^{2}\right) \tag{1.4}
\end{equation*}
$$

where $\varepsilon$ is a small real parameter, and $f_{1}\left(z_{0}, 0\right)$ is assumed to be analytic and bounded in the region of flow.

Since the perturbation is assumed to be potential, the equations of the perturbed flow are of the form

$$
\begin{equation*}
\operatorname{Re} \frac{\partial f}{\partial t}+\frac{w \bar{w}}{2}+\frac{p}{\rho_{0}}=0, \quad w=\frac{\partial f}{\partial z} \tag{1.5}
\end{equation*}
$$

where $f(z, t)$ is the complex potential, $w$ is the complex velocity, $z$ is a physical variable in the perturbed flow region, and $\rho_{0}$ is the constant density of the fluid.

At the initial instant the velocity field of the perturbed flow differs only slightly from that of the unperturbed flow, hence it can be reasonably assumed that at subsequent instants the perturbed flow region $D_{t}$ does not appreciably differ from the unperturbed flow region $D_{0}$. i. e. . the boundary of $D_{t}$ is of the form

$$
\begin{equation*}
1+\delta(\theta) \leqslant\left|z_{0}\right| \leqslant r^{-1}, \quad \delta(\theta) \in C^{2}[0,2 \pi] \tag{1.6}
\end{equation*}
$$

and $\delta(\theta) \sim \varepsilon, \delta^{\prime}(\theta) \sim \varepsilon$ and $\delta^{\prime \prime}(0) \sim \varepsilon$. Since the fluid is assumed incompressible, the areas of $D_{0}$ and $D_{t}$ are equal, i.e.,

$$
\begin{equation*}
\int_{0}^{2 \pi} \delta(\theta) d \theta=0 \tag{1.7}
\end{equation*}
$$

Relationship (1.7) makes it possible to assert that the conformal mapping $D_{0} \rightarrow D$; exists in the first approximation, hence function

$$
\begin{equation*}
z=z\left(z_{0}, \bar{z}_{0}, t\right)=z_{0}+\varepsilon z_{1}\left(z_{0}, t\right)+O\left(\varepsilon^{2}\right) \tag{1.8}
\end{equation*}
$$

is analytic to within terms of the order of $\varepsilon^{2}$.
When the form of the free boundary $\delta(\theta)$ is known, it is possible to derive the explicit expression for $z_{1}\left(z_{0}, t\right)$.

Let us actually seek $z\left(z_{0}, \bar{z}_{0}, t\right)$ in the form $z_{0}+\Delta z$. In the first approximation we have

$$
\operatorname{Re}\left(\Delta z \bar{z}_{0}\right)=\left\{\begin{aligned}
0, & \left|z_{0}\right|=r^{-1} \\
\delta(\theta), & \left|z_{0}\right|=1
\end{aligned}\right.
$$

If $\delta(\theta)$ is specified by a Fourier series with coefficients $a_{k}$, then

$$
\Delta z=\sum_{k=-\infty, k \neq 1}^{k=+\infty} 2 a_{k-1} z_{0}^{k}\left(r^{k+1}-r^{3-k}\right)^{-1}
$$

Using (1.8) we seek the unknown functions in the form

[^0]\[

$$
\begin{align*}
p(z, t) & =p_{0}\left(z_{0}\right)+\varepsilon p_{1}\left(z_{0}, t\right) \\
w(z, t) & =\zeta\left(z_{0}\right)+\varepsilon w_{1}\left(z_{0}, t\right)  \tag{1.9}\\
f(z, t) & =f_{0}\left(z_{0}\right)+\varepsilon\left[f_{1}\left(z_{0}, t\right)+\zeta z_{1}\left(z_{0}, t\right)\right]
\end{align*}
$$
\]

and linearize (1.5)

$$
\begin{equation*}
p_{1}=-\rho_{0} \operatorname{Re}\left(\frac{\partial \eta_{1}}{\partial t}+\bar{\zeta} w_{1}\right), \quad w_{1}=-i \zeta^{2}\left(\frac{\partial f_{1}}{\partial \zeta}+z_{1}\right) \tag{1.10}
\end{equation*}
$$

These equations, which are valid throughout region $D_{0}$, must be supplemented by relationships satisfied at the free boundary of the perturbed flow

$$
\begin{equation*}
p=\text { const }, \quad(d z / d t)_{n}=(\bar{w})_{n} \tag{1.11}
\end{equation*}
$$

Linearizing relationships (1.11) by means of (1.9) and using (1.10), we obtain

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\partial f_{1}}{\partial t}+\frac{w_{1}}{\zeta}\right)=0, \quad \operatorname{Im}\left(\zeta \frac{\partial z_{1}}{\partial t}-i \zeta^{2} \frac{\partial z_{1}}{\partial \zeta}+\frac{w_{1}}{\zeta}\right)=0 \tag{1.12}
\end{equation*}
$$

Relationships (1.12) are satisfied at the perturbed flow boundary, since at the circumference by virtue of $(1.8)|\zeta|=1$. Relationships (1.12) must be supplemented by conditions at the wall

$$
\begin{equation*}
\operatorname{Im} f_{1}=0, \quad \operatorname{Im}\left(\zeta z_{1}\right)=0 \quad \text { for } \quad|\zeta|=r \tag{1.13}
\end{equation*}
$$

It follows from (1.13) that the second of relationships (1.12) is valid for $|\zeta|=r$, hence

$$
\begin{equation*}
\zeta \frac{\partial z_{1}}{\partial t}-i \zeta^{2} \frac{\partial z_{1}}{\partial \zeta}+\frac{w_{1}}{\zeta}=b(t) \tag{1.14}
\end{equation*}
$$

where $b(t)$ is a real function of time. Owing to the arbitrariness of the right-hand side of (1.14), the latter admits the particular solution

$$
z_{1}=\frac{1}{\zeta} \int_{0}^{t} b(\tau) d \tau
$$

which represents a rotation of the whole region $D_{0}$ around $z_{0}=0$. Its occurrence is due to the mapping $D_{0} \rightarrow D_{t}$ being defined in (1.8) to within the rotation of $D_{0}$. Hence for normalizing the mapping we set $b(t)=0$, and from (1.10), (1.12) and (1.14) we then obtain

$$
\begin{equation*}
\operatorname{Im}\left(i \frac{\partial^{2} f_{1}}{\partial t^{2}}+2 \zeta \frac{\partial^{2} f_{1}}{\partial t \partial \zeta}-i \zeta^{2} \frac{\partial^{2} f_{1}}{\partial \zeta^{2}}\right)=0, \quad \text { for }|\zeta|=1 \tag{1.15}
\end{equation*}
$$

The latter condition together with relationships (1.12) and the relationship

$$
\begin{equation*}
\operatorname{Im} f_{1}=0 \quad \text { for } \quad|\zeta|=r \tag{1.16}
\end{equation*}
$$

completely defines at $|\zeta|=1$ the solution of the problem.
Let at the initial instant $t=0$ functions $f_{1}(\zeta, 0)$ and $z_{1}(\zeta, 0)$, specified by their expansions into Laurent series in the hodograph region (1.12) be given by

$$
\begin{array}{lr}
f_{1}(\zeta, 0)=\sum_{n \neq 0} s_{n} \zeta^{n}, \quad s_{-n}=\bar{s}_{n} r^{2 n}  \tag{1.17}\\
z_{1}(\zeta, 0)=\sum_{n \neq 0} q_{n} \zeta^{n-1}, \quad q_{-n}=\bar{q}_{n} r^{2 n}
\end{array}
$$

Initial perturbations satisfy conditions (1.13) and (1.7). We seek the solution of the problem in the form of a Laurent expansion in the ring (1.2). By satisfying for $b(t)=0$
conditions (1.12), (1.15) - (1.17), and (1.14) we obtain

$$
\begin{gather*}
\binom{f_{1}(\zeta, t)}{z_{1}(\zeta, t)}=\sum_{n \neq 0}\left\{P_{n}\binom{\zeta^{n}}{x_{n}^{-1} \zeta^{n-1}} e^{\lambda_{n}^{t}}+Q_{n}\binom{\zeta^{n}}{-x_{n}^{-1} \zeta^{n-1}} e^{\mu_{n}^{t}}\right\}  \tag{1.18}\\
P_{n}=1 / 2\left(s_{n}+q_{n} x_{n}\right), \quad Q_{n}=1 / 2\left(s_{n}-q_{n} x_{n}\right) \\
\lambda_{n}=\operatorname{in}\left(1+x_{n}\right), \quad \mu_{n}=\operatorname{in}\left(1-x_{n}\right) \\
x_{n}=n^{-1 / 2}\left(\frac{1-r^{2 n}}{1+r^{2 n}}\right)^{1 / 2}
\end{gather*}
$$

The derived formulas make it possible to resolve the question of the smoothness of input data necessary for the convergence of series (1.18) and for the existence and continuity at the boundaries of $D_{0}$ of derivatives

$$
d z_{1} / d t, d^{2} f_{1} / d t^{2}, d z_{1} / d \zeta, d^{2} f_{1} / d \zeta^{2}
$$

and for the dislocation $\delta(\theta)$ to nave a small curvature. In fact, it is sufficient that $f_{1}\left(z_{0}, 0\right) \in C^{4}\left(D_{0}\right)$ and $z_{1}\left(z_{0}, 0\right) \in C^{3}\left(D_{0}\right)$. Using Privalov's lemma [2], we can reduce the smoothness requirements for the input data, i. e., it is possible to show that stipulation for

$$
\frac{\partial^{3} f_{1}\left(e^{i \theta}, 0\right)}{\partial \theta^{8}}, \quad \frac{\partial^{2} z_{1}\left(e^{i \theta}, 0\right)}{\partial \theta^{2}}
$$

to uniformly satisfy the Hölder condition at the circumference $\left|z_{0}\right|=1$ is sufficient.
The series expansion ( 1.18 ) provides the solution of the problem of stability with respect to small perturbations of the flow considered above. The stability of this flow is indifferent and has a discrete spectrum of purely imaginary eigenvalues $\lambda_{n}$ and $\mu_{n}$. The system of eigenfunctions (in parentheses in the right-hand side of (1.18)) is complete in the space of input data (1.17).

The flow stability is related to the stabilizing effect of the centrifugal force which at the free boundary removes the linear increase of perturbation with respect to time. In fact, with a circular wall inside and a free boundary outside of the vortex ( $r>1$ ) the flow becomes absolutely unstable.
2. A free hollow vortex. Let us consider the limit case of the flow described in Sect. 1 for infinitely distant wall, i. e., for $r \rightarrow 0$. Region $D_{0}$ is then outside the unit circle $\left|z_{0}\right| \geqslant 1$, and the hodograph region is the unit circle with point $\zeta=0$ removed. Function $\dot{f}_{1}\left(z_{0}, 0\right)$ is assumed bounded at an infinitely distant point and function $z_{1}\left(z_{0}, 0\right)$ is supposed to satisfy condition (1.7), which is equivalent to the requirement that $p_{1}\left(z_{0}, 0\right) \rightarrow 0$ for $\left|z_{0}\right| \rightarrow \infty$.

In this case the conformal mapping $D_{0} \rightarrow D_{t}$ is feasible (not necessarily in the first approximation), and perturbation equations are particularly simple. Equation (1.15) then extends to the inside of the unit circle (since the functions appearing in it are bounded) and takes the form

$$
\begin{equation*}
\frac{\partial^{2} f_{1}}{\partial t^{2}}-2 i \frac{\partial^{2} f_{1}}{\partial t}+\rho_{5}^{2} \frac{\partial^{2} f_{3}}{\partial \zeta^{2}}=0 \quad \text { for } \quad \mid s 1 \leqslant 1 \tag{2.1}
\end{equation*}
$$

From relationships (1.12) we find that

$$
\partial f_{1} / \partial t=-w_{1} \xi^{-1} \quad \text { for }|\xi| \leqslant 1
$$

Hence

$$
\left.\frac{\partial f_{1}}{\partial t}\right|_{t=0}=i \zeta\left(\frac{\partial f_{1}(\zeta, 0)}{\partial \zeta}+z_{1}(\zeta, 0)\right)
$$

With known $f_{1}(\zeta, 0)$ and $\partial f_{1}(\zeta, 0) / \partial t$ we can find $f_{1}(\zeta, t)$ from Eq. (2.1) and then integrating (1.14) with $b(t)=0$, to determine $z_{1}(\zeta, t)$. In this case the unknown functions are sought in the form of Taylor's series. Formulas defining the solution of this problem are obtained by transition to the limit $r \rightarrow 0$ in (1.18).

It should be noted that all statements derived in Sect. 1 are valid in this limit case.
The author thanks S.K. Godunov and E.E. Shnol for discussing this paper.

## BIBLIOGRAPHY

1. Fox.J. L. and Morgan, G. W., On the stability of some flows of ideal fluid with free surfaces. Quart. Appl. Math. . Vol 11, N84, 1954.
2. Courant, R., Equations with Partial Derivatives [Russian translation]. Mir, Moscow, 1964.

Translated by J. J. D.

UDC 532.5

# ON ONE EXACT SOLUTION OF EQUATIONS OF PLAIN <br> NONSTATIONARY MOTION OF GAS 

PMM Vol. 36, N${ }^{\text {P1, }}$, 1972, pp. 65-70<br>O.F. MEN 'SHIKH<br>(Kuibyshev)<br>(Received June 28, 1971)

An exact solution of equations of a plain nonstationary potential isentropic motion of gas dependent on two arbitrary functions with the Poisson adiabatic exponent equal to two is derived. The solution is interpreted as the motion of "shallow water" with a free surface which must be ruled. The general aspects of shallow water motion, and in particular the case of a cylindrical free surface an nonunivariate motion are considered.

1. The equation defining a plane nonstationary potential isentropic motion of gas is taken in the form [1]

$$
\begin{gather*}
\left(\Phi_{H}\right)^{2}+\Phi_{u u} \Phi_{v o}-\left(\Phi_{u v}\right)^{2}-\Phi_{H}\left(\Phi_{u u}+\Phi_{v o}\right)+  \tag{1.1}\\
+(\gamma-1) H\left[\left(\Phi_{u H}\right)^{2}+\left(\Phi_{v H}\right)^{2}+2 \Phi_{H} \Phi_{H H}-\Phi_{H H}\left(\Phi_{u u}+\Phi_{v o}\right)\right]=0
\end{gather*}
$$

where $u$ and $v$ are projections of the velocity vector $\mathbf{v}$ on the $x$ and $y$ axes of a Cartesian system of coordinates, $H$ is the enthalpy, $i$ is the time, $\gamma$ is the Poisson adiabatic exponent, and $\Phi$ is the conjugate potential related to the velocity potential $\varphi$ by formula

$$
\begin{equation*}
\Phi=\varphi-x u-y v+t\left[1 / 2\left(u^{2}+v^{2}\right)+H\right] \tag{1.2}
\end{equation*}
$$

Transition to variables $t, x, y$ is by formulas


[^0]:    *) Physically perturbations can be induced by a momentary pulse of force or by a perturbation of the free surface.

