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Proof is given of the idifferent stability with respect to small perturbations of 
two flows: a hollow vortex bounded on the outside by a circular wall, and a free 

hollow vortex. 
A method of analyzing the stability of plane potential flows of a perfect incom- 

pressible fluid with respect to small perturbations was suggested in [l] by which 
the difficulties arising in the determination of eigenfunctions of two-dimensional 

hydrodynamic flows. The method proposed there for the analysis of stability con- 
sists of the linearization of equations of hydrodynamics by conformal mapping 
of the unperturbed flow region onto that of the perturbed flow. It is applicable 

to fairly simple regions of the unperturbed flow, otherwise the feasability of con- 
formal mapping becomes problematic. This aspect was not touched upon in [l] ; 
some of the flows considered by the Authors cannot be analyzed in this way, since 
for these conformal mapping is impossible. Neither the question of completeness 
of the system of eigenfunctions in cases in which mapping is possible was inves- 

tigated by them. It is, therefore, interesting to examine the equations arising 
in investigations of small perturbations of stationary flows by the method of con- 
formal mapping, to determine its limits of applicability and, also, to solve 
Cauchy’s problem in terms of perturbation equations. 

1. A hollow vortex bounded on the outlfde by a circular wall. 
The potential flow of an incompressible fluid in the form of a plane hollow vortex boun- 
ded on the outside by a circular wall is considered. With the notation z0 = z,, $ iy, 
for the complex variable in the physical plane of flow and 5 = u0 - iv,, for the com- 
plex velocity, the flow velocity is given by formula 

[ = - ic-1, 1 G I zo I <r-l, O<r<l (I.11 
The flow boundary 1 q, 1 = 1 is free and the pressure at it is constant: p = const. 
The line 1 zO 1 = F-’ is the rigid wall and the flow hodograph is represented by the ring 
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6151<1 (1.2) 
The complex flow potential f,, = ‘p,, + i$,, is defined by formula 

f. = - i In 2s (1.3) 

Let at the initial instant of time t = 0 the flow be acted upon by perturbing forces 
(*) and the perturbed flow potential f (z,,, 0) can be expressed by 

f (%3? 0) = - i lnz, f efl(zo, 0) + 0 (e2) (1.4) 

where e is a small real parameter, and fl (zo, 0) is assumed to be analytic and bounded 

in the region of flow. 
Since the perturbation is assumed to be potential, the equations of the perturbed flow 

are of the form 

(1.5) 

where f (z, t) is the complex potential, w is the complex velocity, z is a physical 
variable in the perturbed flow region, and PO is the constant density of the fluid. 

At the initial instant the velocity field of the perturbed flow differs only slightly from 
that of the unperturbed flow, hence it can be reasonably assumed that at subsequent in- 

stants the perturbed flow region Dt does not appreciably differ from the unperturbed 
flow region D, , i.e., the boundary of D, is of the form 

I + 6 (0) G ( z. I G r-1, 6 (0) E c2 LO, 2nl (1.6) 

and S(0)- E, 6’ (0) .- e and 6” (6) - e. Since the fluid is assumed incompressible, 

the areas of Do and 0, are equal, i.e., 
277 

s 
8p)de = 0 (i-7) 

0 

Relationship (1.7) makes it possible to assert that the conformal mapping D, + D,, 
exists in the first approximation, hence function 

2 = 2 (zs, Z,, t) = zO + ezi(.zs, t) + 0 (e2) (1.8) 

is analytic to within terms of the order of e2. 
When the form of the free boundary 6 (0) is known, it is possible to derive the explicit 

expression for 21 (zO, t). 
Let us actually seek z (zO, G, t) in the form zO + AZ. In the first approximation we have 

Re (AZ.%) = 
0, 1 zo 1 = r-1 

s(e), Izol=i 

If 6 (8) is specified by a Fourier series with coefficients Ok, then 
k=+oo 

AZ = r, 2ak_, zol’ (?+I - ?-k)-l 

k=--m,k#l 

Using (1.8) we seek the unknown functions in the form 

l ) Physically perturbations can be induced by a momentary pulse of force or by a pertur- 
bation of the free surface. 



On the stability of a plain hollow vortex 55 

P (23 0 = PO (20) + E Pl (zo1 6 

w (zJ> = c (zo) + ew1 h, 0 

f b, t) = fo (%J + &If1 (% t> + 5% bo7 Gl 

and linearize (1.5) 

p1 = - poRe($- + &), w1 = - G2(-$ + 21) 

(1.9) 

(1.10) 

These equations, which are valid throughout region Do, must be supplemented by rela- 
tionships satisfied at the free boundary of the perturbed flow 

p = const, (dz / d& = F)* (1.11) 

Linearizing relationships (1.11) by means of (1.9) and using (l.lO),we obtain 

Re(_$_+~]=(), Im (cJ$--ic2$+?)=0 (1.12) 

Relationships (1.12) are satisfied at the perturbed flow boundary, since at the circumfer- 
ence by virtue of(l.8) 1 5 1 = 1. Relationships (1.12) must be supplemented by cond- 

itions at the wall 

Imf, = 0, Im(&z,) = 0 for lCl=r (1.13) 

It follows from (1.13) that the second of relationships (1.12) is valid for 1 5 ) = r,hence 

h.1 
5 9 - ic2- + y = b(t) (1.14) 

where b (t) is a real function of time. Owing to the arbitrariness of the right-hand side 
of (1.14), the latter admits the particular solution 

which represents a rotation of the whole region Do around so = 0. Its occurrence is due 

to the mapping Do + Dt being defined in (1.8) to within the rotation of Do. Hence 

for normalizing the mapping we set b (t) = 0 , and from (1. lo), (1.12) and (1.14) we 
then obtain 

Im i$+26$c-i5’$)=0, 
( 

for 151-i (1.15) 

The latter condition together with relationships (1.12) and the relationship 

Imf,=O for jCl=r (1.16) 

completely defines at 15 1 = 1 the solution of the problem. 
Let at the initial instant t = 0 functions fr (c,(l) and zi (6, U), specified by their 

expansions into Laurent series in the hodograph region (1.12) be given by 

fi(5YO) = 2 s7Jn, s_, = .!fnran (1.17) 
ni@ 

%K, 0) = 2 QnP--l, 9-n = qJ2n 

n#o 

Initial perturbations satisfy conditions (1.13) and (1.7). We seek the solution of the 
problem in the form of a Laurent expansion in the ring (1.2). By satisfying for 6 (t) = 0 
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conditions (1.12), (1.15) - (1.17) and (1.14) we obtain 

pn = ‘/a (%a + w,), Q, = I12 (%I - Qn%l) 

h, = in (1 + x,), pn=in(l -x,) 

The derived formulas make it possible to resolve the question of the smoothness of input 
data necessary for the convergence of series (1.18) and for the existence and continuity 
at the boundaries of D, of derivatives 

az,tat ) cPflldt=, dz,ld 5) d=f ,ld Ly 
and for the dislocation 6 (0) to have a small curvature. In fact, it is sufficient that 
fi (20, O)EC’(D,)and zr (zs. O)EC~ (D,). Using Privalov’s lemma c2], we can reduce 
the smoothness requirements for the input data, i.e., it is possible to show that stipula- 

tion for 8% (e”, 0) a%., @*a, 0) 
des ' a02 

to uniformly satisfy the Holder condition at the circumference 1 z. 1 = 1 is sufficient. 
The series expansion (1.18) provides the solution of the problem of stability with re- 

spect to small perturbations of the flow considered above. The stability of this flow is 
indifferent and has a discrete spectrum of purely imaginary eigenvalues &, and p,,. 

The system of eigenfunctions (in parentheses in the right-hand side of (1.18)) is complete 
in the space of input data (1.17). 

The flow stability is related to the stabilizing effect of the centrifugal force which 

at the free boundary removes the linear increase of perturbation with respect to time. 
In fact, with a circular wall inside and a free boundary outside of the vortex (r > 1) 

the flow becomes absolutely unstable. 

2. A free hollow vortex. let us consider the limit case of the flow described 

in Sect. 1 for infinitely distant wall, i.e., for r -+ 0 . Region D, is then outside the 
unit circle 1 z,, j > 1, and the hodograph region is the unit circle with point G = 0 
removed. Function ii (z,,, 0) is assumed bounded at an infinitely distant point and func- 
tion zi (zO. 0) is supposed to satisfy condition (1.7), which is equivalent to the require- 
ment that pi (z,,, 0) -+ 3 for / .zo 1 -+ 00. 

In this case the conformal mapping .D, --f Dt i.s feasible (not necessarily in the first 

approximation), and perturbation equations are particularly simple. Equation (1.15) 
then extends to the inside of the unit circle (since the functions appearing in it are 

bounded) and takes the form 

From relationships (1.12) we Lind that 

:a.:) 

Vence 
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y,_, = iqy +z&o)) 

With known fl (5, 0) and aj, (5, 3)/& we can find fl (5, t) from Eq. (2.1) and then 
integrating (1.14) with b (t) = 0, to determine z1 (5, ,$). In this case the unknown 
functions are sought in the form of Taylor’s series. Formulas defining the solution of 
this problem are obtained by transition to the limit r + 0 in (1.18). 

It should be noted that all statements derived in Sect. 1 are valid in this limit case, 

The author thanks S. K. Godunov and E. E. Shnol for discussing this paper. 
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An exact solution of equations of a plain nonstationary potential isentropic motion 
of gas dependent on two arbitrary functions with the Poisson adiabatic exponent 

equal to two is derived. The solution is interpreted as the motion of “shallow 
water” with a free surface which must be ruled. The general aspects of shallow 

water motion, and in particular the case of a cylindrical free surface an nonuni- 
variate motion are considered. 

1. The equation defining a plane nonstationary potential isentropic motion of gas is 
taken in the form [l] 

(&)2 t q&G”, - (%“)” - Qr(QL4 f @“cJ + (1.1) 

+ (7 - 1)H [(O&g + (cDvH)2 + aQf%m - mm(QLu + QPJ)l = 0 

where u and 7~ are ,projections of the velocity vector v on the x and ,y axes of a Car- 
tesian system of coordinates, His the enthalpy , P is the time, y is the Poisson adia- 
batic exponent, and @ is the conjugate potentialrelated to the velocity potential (p by 
formula 

@ 5 q - zu - yz’ + t I’/, (u” -t 1j2) -I- ITI (1.2) 

Transition to variables t, 5, y is by formulas 


